sábado, 14 de agosto de 2021

Copo de nieve de Koch

¡Hola a todos!

Breve introducción
Los fractales son objetos matemáticos cuya principal peculiaridad es el de ser autosimilares, es decir, que a cualquier escala se puede observar la misma estructura.
Para trabajar con los fractales, dibujaremos una figura muy conocida: El copo de nieve de Koch, una figura geométrica muy conocida construida a partir de la curva de Koch. Además, aprovecharemos para teselar dicha figura (es decir, construiremos mosaicos) usando triángulos equiláteros.

El copo de nieve de Koch
Este fractal está muy relacionado con la curva de Koch. El procedimiento de generación de ambos es muy similar. En el caso del copo de nieve se comienza con un triángulo equilátero, cuyos lados son divididos en segmentos de un tercio de su longitud. El segmento central se sustituye con un triángulo equilátero de lado igual a los segmentos y se elimina la base. Para generar el copo se repite infinitas veces este proceso sobre los nuevos segmentos generados en la anterior iteración.
 



Instrucciones para dibujarlo
Utilizaremos una cartulina blanca de 50×60 cm. La usaremos en vertical para que nos quepa el dibujo, el letrero arriba y nuestro nombre en la parte inferior. El título irá en la parte superior, centrado y procurando no hacer las letras demasiado grandes, para intentar escribirlo en una sola línea.
Empezaremos dibujando con lápiz blando (fácil de borrar) un triángulo equilátero de lado igual a 378 milímetros (37,8 cm), con la base paralela al lado inferior de la cartulina y cuya esquina inferior izquierda esté situada a 61 mm (6,1 cm) del borde izquierdo y a unos 192 mm (19,2 cm) del borde inferior.

Una vez dibujado el triángulo, lo convertiremos en un copo de nieve de Koch, usando tres iteraciones. En la primera, las longitudes de los segmentos serán 378:3 = 126 mm. En la segunda, 126:3 = 42 mm. Por último, tendremos segmentos que medirán 42:3 = 14 mm de lado. Obtendremos una figura cuyo aspecto será muy similar a la imagen de la derecha en la ilustración donde se muestran las primeras iteraciones en la construcción de este fractal.


Resumen de las dimensiones

LADO (mm)SEMILADO (mm)ALTURA (mm)
378 189327
12663109
422136
14712

Aspecto final de la figura fractal en la cartulina
La altura será de 504 mm (378+126) y su anchura de 378 mm.




¡Hasta pronto!
David Casas García-Minguillán

domingo, 8 de agosto de 2021

Forma general de la ecuación de la parábola

Hola a todo el mundo:

hoy os traigo unas expresiones matemáticas que desarrollé para transformar la forma general de una parábola del tipo y = ax^2 + bx + c a una del tipo y = a(x +/- d)^2 +/- e.

Podéis encontrar la transformación en este enlace:

Expresión de la parábola

Lo he aplicado a un ejemplo sencillo, usando la parábola y = x^2 - 4x + 3, cuya gráfica es la siguiente:


Para obtener las transformaciones que aparecen en el archivo, me basé en la obtención de la solución general de la ecuación de segundo grado mediante el ajuste al cuadrado del binomio. Podéis encontrar un resumen en este fichero:

Cuadrado del binomio y ecuación de segundo grado

Este resumen es una simplificación de un artículo más ilustrativo que podemos encontrar en el blog de Gaussianos:

¿De dónde sale la fórmula para resolver ecuaciones polinómicas de segundo grado?

Espero que hayáis encontrado útil la entrada de hoy.

¡Hasta pronto!

David Casas García-Minguillán






sábado, 20 de marzo de 2021

Paternóster

¡Hola!

Hoy os traigo un vídeo que grabé en la Facultad Electrotécnica de Praga en 2014. Se trata de un tipo especial de ascensor que no se ve habitualmente, salvo en películas y series de época, como Babylon Berlin.

Un paternóster es un ascensor que consiste en una cadena de compartimentos abiertos, habitualmente diseñados para dos personas, que, sin detenerse ,se mueve lentamente en un ciclo hacia arriba y hacia abajo en un edificio.

En este vídeo os enseño como se mueve el de Praga y también como me monto en él.

¡Hasta pronto!

David Casas García-Minguillán



FOTOS:

Facultad Electrotécnica de Praga:

David Casas; CC BY-SA 4.0

Ascensor:

https://upload.wikimedia.org/wikipedia/commons/b/b2/Paternoster.png

Helfmann, Public domain, via Wikimedia Commons

domingo, 7 de marzo de 2021

Ejercicio de Física resuelto. Oposiciones de enseñanza secundaria: Convocatoria de 2015 en Castilla-La Mancha (I)

 ¡Hola a todo el mundo!

Acabo de resolver el siguiente ejercicio y os dejo aquí la solución:

"Un émbolo de 1 kg se encuentra en reposo en una guía vertical sin rozamiento. Sobre él cae una pelota de 500 g que se encontraba inicialmente a 5 m de altura sobre el émbolo y rebota elásticamente en él, según se indica en la figura. Si la constante del resorte es k = 400N/m, hállese la posición "y" en función del tiempo a partir del instante del rebote."



La solución está en el siguiente archivo, en formato pdf:

Problema con su resolución

¡Hasta pronto!

David Casas García-Minguillán

domingo, 28 de febrero de 2021

Vostok Amphibian

 ¡Hola!

Vostok Amphibian: mi nuevo reloj de pulsera. Ha sido un regalo de cumpleaños que fue hace unos días, en febrero.

Este reloj ruso es mecánico, automático y sumergible. Lo que más me gusta es su estética, con el diseño del submarinista y sus palabras en ruso.






¡Hasta pronto!

David Casas García-Minguillán

viernes, 13 de noviembre de 2020

Curiosidades matemáticas: fracciones interesantes

¡Hola!

Hoy os traigo un pequeño descubrimiento que he hecho. Al ir a redactar un examen de matemáticas y buscar fracciones a partir de decimales periódicos puros, me he encontrado con la siguiente fracción:

9602 / 9801

¿Cómo llegué a esta expresión?

Introduje un número decimal en la calculadora: 0,97969594939291. Mi intención era que fuese exacto y me devolviese la parte entera divida entre la correspondiente potencia de diez. En cambio, me quedé sorprendido cuando me devolvió la fracción anterior.

Al ir a comprobarlo en Wolfram Alpha,

Aplicación para convertir decimales en fracciones y viceversa,

me encontré que esta fracción es equivalente a un decimal periódico puro, ¡de periodo 198!

9602 / 9801 = 

0,979695949392919089888786858483828180797877767574737271706968676665646362616059585756555453525150494847464544434241403938373635343332313029282726252423222120191817161514131211100908070605040302009998

Otro decimal periódico puro, de periodo 1188, se puede obtener a partir de

9502 / 9701

Finalmente, a partir de la fracción,

9702 / 9901

obtenemos un decimal periódico puro de solo 12 cifras:

0,979901020098

¡Hasta pronto!

David Casas García-Minguillán


domingo, 30 de agosto de 2020

La capitana de Kneppendorf: mi nueva novela

¡Hola a todo el mundo!

Ya está a la venta mi nueva novela, La capitana de Kneppendorf, en Amazon. Tiene ilustraciones internas, que luego os enseñaré, y un apéndice con algunas de las cuestiones más relevantes. Entre las aclaraciones, nos podemos encontrar como influye el efecto de Coriolis en algunas partes de la trama.

Este es el texto de contraportada:

Willa Vogel es deportada desde FAE7 hasta su colonia natal, Nueva Prusia, un inmenso cilindro en rotación en el que sus habitantes viven conforme a las costumbres y tecnología de la Alemania de principios del siglo XX. Sin embargo, el regreso al hogar no será fácil y quedará atrapada en una trampa burocrática de la que no podrá salir. Desesperada, no le quedará más remedio que buscar una arriesgada vía de acción para obtener lo que necesita.

Estamos en el siglo XXIII y la humanidad se ha expandido por el sistema solar, convirtiendo el cinturón de asteroides en un conglomerado de colonias que han mantenido muchas de las diferencias de los estados de la Tierra. Como consecuencia, las sociedades del futuro acabarán repitiendo los mismos errores que las naciones del pasado.

También tengo un booktrailer (incluyendo una versión alternativa de este) para su promoción.

Versión principal:


Versión alternativa:



Estas son las ilustraciones de cubierta, portada e interiores:













Mi novela está disponible en ebook y tapa blanda. ¡Os la recomiendo! Si os gusta, os invito a que dejéis vuestras reseñas en Amazon. ¡Muchas gracias!

Hasta pronto.
David Casas García-Minguillán